

Dieses Wahlpflichtmodul ist ein Angebot der:

Masterstudiengang Informatik

Rettungsrobotik

Prof. Dr. Hartmut Surmann hartmut.surmann@w-hs.de

Prof. Dr. Jörg Frochte joerg.frochte@hs-bochum.de

Prof. Dr. Christof Röhrig christof.roehrig@fh-dortmund.de

Modulbeschreibung Blockwochenmodul:

Modultitel	Rettungsrobotik
anbietender Studiengang	W-HS: Informatik - Autonome System HS Bochum: Technische Informatik FH Dortmund: Informatik
Hochschulstandort	W-HS Gelsenkirchen, HS Bochum / FH Dortmund
Sprache	Deutsch
Modulbeauftragte/r hauptamtlich Lehrende	W-HS: Prof. Dr. Hartmut Surmann (WHS), HS Bochum: Prof. Dr. Jörg Frochte (HB), FH Dortmund: Prof. Dr. Christof Röhrig (FHDO)
Kontakt	hartmut.surmann@w-hs.de, joerg.frochte@hs-bochum.de, christof.roehrig@fh-dortmund.de

Abkürzung	Workload	Credits*	Semester (WiSe/SoSe)	geplante Gruppengröße	
UAVReRob	180h	5 Bo, Do 6 W-HS	WiSe 21/22	Minimum	Maximu m
				4	12
	Kontaktzeit		Selbststudium		
	Präsenzzeit während der Blockwoche	Zusätzliche Kontaktzeit in der Vor- und Nachbereitungsphase z.B. Videokonferenzen	angeleitet in der Vor- und Nachbereitungsphas	selbstge	esteuert
	30h	15h	15h	110h - Wettbe	_
Lehrveranstaltungen/ Lehrformen Präsenzzeit	Online/Präsenz Hybrid-Kurs				
Lehrformen Vorbereitungsphase	Lernvideos, IPython Notebooks, Dockercontainer				

Lehrformen Nachbereitungsphase

Aufgaben, IPython Notebooks / Wettbewerb

Die Übungen finden wöchentlich per Videokonferenz statt. Der Termin dazu liegt in den Randstunden, so dass Überschneidungen mit anderen Veranstaltungen vermieden werden. Die Praktika mit Drohnen finden in den Laboren der Hochschulen bzw. am Deutschen Rettungsrobotik-Zentrum statt. Die Termine werden in den Veranstaltungen abgestimmt.

* Es besteht die Möglichkeit zusätzliche ECTS-Punkte durch Zusatzleistungen zu erwerben.	Ja, im Umfang von maximal ECTS	Nein
		x
		i

Lernergebnisse/Lernziele/Kompetenzen

Steuerung und Programmierung von kleinen UAVs (< 2kg, Drohnen), Autonome Navigation, Kartenbau, Intelligente Bilddatenauswertung mit neuronalen Netzen

Inhalte

- UAV Führerschein Open, A1 / A3
- Programmierung autonomer UAV Flüge outdoor (NIST)
- Generierung von Übersichtskarten und 3D Modellen aus den autonomen Flügen
- Indoor Flug mit 360° Kamera und Aufbau einer visuellen Karte
- Classifier mit DNN trainieren (Feuerdetektor, Personen, ...)
- Objektlokalisation in einer Karte, Anzeigen von 360° Panoramen
- Vorlagen als IPython Notebooks, die ausprogrammiert werden
- Dockercontainer, in denen Template Files ausprogrammiert werden

Teilnahmevoraussetzungen	 - Kenntnis einer Programmiersprache wie z.B. C/C++, Python, Java Script - Grundlegende Kenntnisse der Bildverarbeitung, Robotik und KI, - Verfügbarkeit eines eigenen PCs mit einem Linux Derivat z.B. Ubuntu 20.04.
Prüfungsformen	UAV-Projekt mit Präsentation (Wettbewerb der Hochschulteams im DRZ - Deutschen Rettungsrobotik Zentrum in Dortmund)
Voraussetzungen für die Vergabe von Kreditpunkten	- Regelmäßige Teilnahme an Übungen und Praktika - Abgabe der aus programmierten Vorlagen - Bestehen der Prüfung (Roboter-Projekt mit Präsentation am Deutschen Rettungsrobotik-Zentrum)

Verwendung des Moduls (in anderen Studiengängen)	- SAS (W-HS, Informatik) - siehe hierzu Homepage der Ruhr Master School
Literatur	 Surmann et al.: Small Commercial UAVs for Indoor Search and Rescue Missions, ICARA 2021, pp. 106-113 (2021). Frochte, Maschinelles Lernen: Grundlagen und Algorithmen in Python weitere Literatur während der Blockwoche
Anmerkungen	Der Wettbewerb findet Ende Februar 2022 in der DRZ-Halle in Dortmund statt. Der genaue Termin wird während der Veranstaltung festgelegt.